Skip Navigation


                               24.Copper (I) oxide nanoparticle-mediated synthesis of polyphenylenediethynylenes: Evidence for homogeneous catalytic pathway

                                                     Pary, F. F., Tirumala, R. T., Andiappan, M*., Nelson, T. L*., 2020, Submitted.


23. Plasmonic Photocatalysis. In Catalysis Series: Volume 33, Editors: Spivey, J., Han, Y., Shekhawat, D. Royal Society of Chemistry, 2020, Invited Book Chapter, Submitted.

Ramakrishnana, S, B., Tirumala, R. T., Mohammadparast, F., Mou, T., Le, T., Wang., Andiappan, M. 


22. Cuprous Oxide Cubic Particles with Strong and Tunable Mie Resonances for Use as Nanoantennas.,

Mohammadparast, Farshid; Bhardwaj, Sundaram; Khatri, Nishan; Addanki Tirumala, Ravi Teja; Tan, Susheng; Kalkan, A. Kaan; Andiappan, M, ACS Appl.Nano Mater,2020, 3, 7, 6806–6815.


21. Operando UV-Vis Spectroscopy as Potential In-line PAT System for Size Determination of Functioning Metal Nanocatalysts.,

Mohammadparast. F.; Ravi Teja. AT.;Ramakrishnan, B.;Dadgar. A.Andiappan, M, Chemical Engineering Science,  2020, 255, 115821.


20. Plasmonic Nucleotide Hybridization Chip for Attomolar Detection: Localized Gold and Tagged Core/Shell Nanomaterials.,

 Al Mubarak, Zainab; Premaratne, Gayan; Dharmaratne, Asantha; Mohammadparast, Farshid; Andiappan, M; Krishnan, Sadagopan., Lab on a Chip , 2020, 72, 717-721.


19. Multiplexed Surface Plasmon Imaging of Serum Biomolecules: Fe3O4@Au Core/shell Nanoparticles with Plasmonic Simulation In-sights

Premaratne, G., Dharmaratne, A., Al Mubarak, Z., Mohammadparast, F., Andiappan, M., Krishnan, S., Sensors and Actuators B: Chemical, 2019, 299, 126956 .


18. Homogeneous versus Heterogeneous Catalysis in Cu2O-nanoparticle-catalyzed C-C Coupling Reactions.

Ravi Teja. AT.; Dadgar. A.; Mohammadparast. F.; Ramakrishnan, B.; Mou, T.; Wang. B.;Andiappan, M.Green Chemistry2019, 21, 5284 - 5290.


17C-C Coupling Reactions Catalyzed by Gold Nanoparticles: Evidence for Substrate-mediated Leaching of Surface Atoms using Localized Surface Plasmon Resonance Spectroscopy [Featured on Supplementary Cover]

Mohammadparast. F.; Dadgar. A.; Ravi Teja. AT.; Mohammad. S.; Cagri, O.; Kalkan. K.; Andiappan, M,  J. Phys. Chem.C2019, 123, 11539-11545. 


16. Mitigating the risk of co-precipitation of pinacol from telescoped Miyaura borylation and Suzuki couplings utilizing boron pinacol esters: Use of modeling for process design

Merritt. J, Marimuthu.A, Pietz. M, Richey.R, Sullivan.K, Kjell.D, Organic Process Research & Development, 2016, 20, 178-188.


15. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties

Linic.S, Christopher.P, Xin.H, Marimuthu. A, Accounts of Chemical Research, 2013, 46, 1890-1899.


14. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state

Marimuthu. A, Zhang.J, Linic. S, Science, 2013, 339, 1590-1593.


13. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures

Christopher.P, Xin. H, Marimuthu.A, Linic. S, Nature Materials, 2012, 11, 1044-1050. 


12. Design of plasmonic platforms for selective molecular sensing based on surface enhanced Raman spectroscopy

Marimuthu.A, Christopher.P, Linic. S , 2012, 116, 9824-9829. 


11. Enzymatic degradation of poly(soybean oil-g-methyl methacrylate)

Vinu.R, Marimuthu.A, Madras. G, Journal of Polymer Engineering, 2010, 30, 57-76.


10. Continuous distribution kinetics for microwave assisted oxidative degradation of poly(alkyl methacrylates)

Marimuthu.A, Madras. G, AIChE Journal, 2008, 54, 2164-2173.


9. Photocatalytic oxidative degradation of poly(alkyl acrylates) with Nano TiO2

Marimuthu.A, Madras.G, Industrial & Engineering Chemistry Research, 2008,    47, 2182-2190. 


8. Effect of oxidizers on microwave-assisted oxidative degradation of poly(alkyl acrylates)

Marimuthu. A, Madras.G, Industrial & Engineering Chemistry Research, 2008, 47, 7538-7544.


7. Selective catalytic reduction of NOx: Mechanistic perspectives on the role of base metal and noble metal ion substitution

Roy.S, Marimuthu. A, Deshpande. P.A, Hegde. M.S, Madras.G, Industrial & Engineering Chemistry Research, 2008, 47, 9240-9247.


6. Low temperature NOx and N2O reduction by H2: Mechanism and development of new nano-catalysts

Roy.S, Hegde.M.S., Sharma.S., Lalla. N.P, Marimuthu. A, Madras.G, Applied Catalysis B: Environmental, 2008, 84, 341-350.


5. NO reduction by H2 over nano-Ce0.98Pd0.02O2-δ

Roy.S, Marimuthu. A, Hegde. M.S., Madras. G, Catalysis Communications, 2008, 9, 101-105.


4. High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline  Ce0.98Pd0.02O2-δ: Catalytic and kinetic studies

Roy.S, Marimuthu. A, Hegde.M.S, Madras. G, Applied Catalysis B: Environmental, 2007, 71, 23-31.


3. Effect of alkyl-group substituents on the degradation of poly(alkyl methacrylates) in supercritical fluids

Marimuthu.A, Madras. G, , Industrial & Engineering Chemistry Research, 2007, 46, 15-21.


2. High rates of CO and hydrocarbon oxidation and NO reduction by CO over Ti0.99Pd0.01O1.99

Roy.S, Marimuthu. A, Hegde.M.S, Madras. G, Applied Catalysis B: Environmental, 2007, 73, 300-310.


1. Higher catalytic activity of nano-Ce1-x-yTixPdyO2-δ compared to nano-Ce1-xPdxO2-δ for CO oxidation and N2O and NO reduction by CO: Role of oxide ion vacancy

Baidya. T, Marimuthu.A, Hegde. M.S, Ravishankar.N, Madras.G,Journal of Physical Chemistry C, 2007, 111, 830-839.